
A DEGREE THEORY FRAMEWORK FOR SEMILINEAR

ELLIPTIC SYSTEMS

CONGMING LI AND JOHN VILLAVERT

Abstract. This paper establishes the existence of positive entire solutions to

some systems of semilinear elliptic equations including those related to the
Lane-Emden and stationary Schrödinger systems. The primary technique for

generating these results employs a degree theoretic approach for the classical

shooting method.

1. Introduction and main results

In this article, we establish the existence of positive bound states for a class of
semilinear systems of the form{

−∆ui = fi(u1, u2, . . . , uL) in Rn,
ui > 0, in Rn,(1.1)

where i = 1, 2, . . . , L and n ≥ 3. Namely, we determine the suitable conditions on
system (1.1) that guarantee the existence of bounded, non-trivial classical solutions
which decay and vanish at infinity. We do so by using a framework that employs
a degree theory approach for the classical shooting method (we refer the reader to
[20] and [29] for methods utilizing similar ideas). Consequently, the examination of
this general class of systems allows us to obtain existence results for systems of the
Lane-Emden and stationary Schrödinger types. In particular, we obtain results for
systems of the Schrödinger type{

−∆u = usvq in Rn,
−∆v = vtup in Rn,(1.2)

and to a related system with weakly coupled nonlinearities{
−∆u = us + vq in Rn,
−∆v = vt + up in Rn,(1.3)

(see [10, 25, 30]) where s, t, p, q ≥ 0. These systems have garnered some recent
attention and they constitute the central and motivating examples of this paper.
In view of this, let us discuss several known and related results for the Lane-Emden
and Schrödinger type systems. If s = t and p = q in (1.2), we arrive at the system{

−∆u = usvp in Rn,
−∆v = vsup in Rn,(1.4)

which is closely related to the stationary Schrödinger systems for the Bose-Einstein
condensate (see [18, 19]). In the special case when n = 3, s = 2, p = 3, and u ≡ v,
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system (1.4) reduces to the quintic stationary Schrödinger equation considered by
Bourgain in [1]. In fact, when 1 ≤ s < p ≤ n+2

n−2 with s + p = n+2
n−2 , the radial

symmetry, monotonicity, and uniqueness (i.e. symmetry of components) of positive
bound states to (1.4) was examined by Li and Ma in [14]. These results were later
extended, among other things, by Quittner and Souplet in [25]. Particularly, one of
the main results of [14] determined the conditions on system (1.4) and its solutions
which guaranteed that u ≡ v. That is, the system actually reduces to the scalar
equation

(1.5) −∆u = u
n+2
n−2 in Rn,

and therefore the celebrated classification result for equation (1.5) [3, 6, 11] implies
that

(1.6) u(x) = v(x) = cn

( t

t2 + |x− x0|2
)n−2

2

,

for some constants cn, t > 0 and some point x0 ∈ Rn.
Another noteworthy case of system (1.2) is the well-known Lane-Emden system{

−∆u = vq, u > 0 in Rn,
−∆v = up, v > 0 in Rn,(1.7)

which has attracted much attention, especially on questions pertaining to existence
and non-existence of classical solutions. In particular, it is conjectured that the
Lane-Emden system has no classical solution if and only if the subcritical case
holds, 1

1+p + 1
1+q >

n−2
n . This is commonly referred to as the Lane-Emden conjec-

ture. Up to now this conjecture has been resolved for radial solutions (see [7, 22]),
for dimension n ≤ 4 (see [24, 27, 28]), and for n ≥ 5 but only under subregions of
the sub-critical Sobolev hyperbola (see [2, 9, 22, 26]). It is well known that such
Liouville type theorems are key to establishing singularity analysis and a priori
estimates for solutions to the Dirichlet problem for a family of second-order elliptic
equations. We should also add that the Lane-Emden system and its scalar coun-
terpart (1.5) are closely related to the Yamabe and prescribing scalar curvature
problems (see [3, 4, 5, 12, 13, 17] and the references therein) and they are also con-
nected with finding the best constant in the Hardy-Littlewood-Sobolev inequality
(see [16] and references therein).

We emphasize that our results not only apply to the Lane-Emden system, but
also for systems without variational structure (e.g. the Schrödinger systems), and
we do so by incorporating only basic tools. It is also worth noting that our methods
here apply to a more general family of elliptic systems not included in past works.
Our main existence results are as follows. Here we call a positive solution (u, v)
a bound state if it is bounded, radially symmetric and u, v −→ 0 uniformly as
|x| −→ ∞.

Theorem 1. Let q ≥ t > 1 and p ≥ s > 1.

(a) (Existence) System (1.2) admits a positive bound state solution if either

(i)
1

1 + p
+

1

1 + q
≤ n− 2

n
or (ii) min{s+ q, t+ p} ≥ n+ 2

n− 2
.

(b) (Symmetry) Additionally, if

(1.8) q + s = p+ t,
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then the solution components are symmetric, i.e., u ≡ v. Therefore if

p+ t = q + s = (n+ 2)/(n− 2),

then the solution is the essentially unique solution, i.e., it assumes the form
(1.6).

Remark 1. In contrast with the Lane-Emden system, a complete understanding
of the optimal conditions for the existence and non-existence of positive solutions
for system (1.2) is still missing. However, Theorem 1 does provide two separate
conditions where one does not properly contain the other, and vice versa. For
instance, if n = 3, s = t = 2 and p = q = 3, then (ii) is satisfied but (i) is not.
Conversely, if n = 3, s > 1 and p = 3, then we can choose large q ≥ 11 and t ∈ (1, 2)
so that (i) is satisfied but not (ii).

Theorem 2. System (1.3) admits a positive bound state solution whenever

min{s, t, p, q} ≥ (n+ 2)/(n− 2).

The rest of this article is structured as follows. Section 2 introduces some no-
tation and preliminary background and states an existence result for the general
system (1.1). Section 3 describes our degree theoretic framework then proves our
existence result for system (1.1). Section 4 recalls some non-existence results for
related boundary value problems required in the proofs of Theorems 1 and 2, which
are then given at the conclusion of the section.

2. Preliminaries and a general result

Let RL+ be the L-times Cartesian product of the interval R+ = [0,∞). Consider −∆ui = fi(u1, u2, . . . , uL) in Rn,
ui > 0 in Rn,

ui −→ 0 uniformly as |x| −→ ∞, for i = 1, 2, . . . , L,
(Global)

where F = (f1, f2, . . . , fL) : RL+ −→ RL+ is a continuous vector-valued map locally

Lipschitz continuous in int(RL+), the interior of RL+, and F (0) = 0.

Further Notation: Throughout, we let BR(x) ⊂ Rn be the open ball of radius R
centered at x with boundary ∂BR(x). At the expense of slightly abusing notation,
we denote vector solutions (u1, u2, . . . , uL) ∈ RL+ simply by u when dealing with
system (Global) whereas u and v are understood to be scalar-valued functions when
dealing with systems (1.2) and (1.3). We say that u > 0 (resp. u = 0) in RL+ if

ui > 0 (resp. ui = 0) for i = 1, 2, . . . , L. For any permutation Ĩ = {i1, i2, . . . , iL} of
the set I = {1, 2, . . . , L}, any positive pair of reals M > m and integer 1 ≤ j < L,

we define Ω = Ω(Ĩ ,m,M, j) ⊂ RL+ to be the subset{
v ∈ RL+

∣∣∣ vik ≤ m, k = 1, 2, . . . , j; m < vik ≤M, k = j + 1, j + 2, . . . , L
}
.

In addition, we shall always assume hereafter that system (Global) satisfies some
non-degeneracy conditions; namely,

(a) F (v) = 0 implies that v ∈ ∂RL+.
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(b) For each pair M > m > 0, there exists a positive constant Cm,M , depending
only on m and M , such that

(2.1)

L∑
k=j+1

fik(v) ≤ Cm,M

{
1

L

j∑
k=1

fik(v)

}
in Ω

for all permutations Ĩ of I and all integers 1 ≤ j < L.

Remark 2. Our non-degeneracy conditions are quite important and we shall see
their precise roles in the next section. Particularly, these assumptions guarantee
that the target map we construct shortly below will be continuous–an important
property needed in our degree theoretic method. Meanwhile, the assumptions also
ensure we avoid trivial solutions or the semi-trivial ones of the form (u, 0) or (0, v).

Remark 3. It is not too difficult to verify that systems (1.2) and (1.3), under the
conditions indicated in our main theorems, satisfy the non-degeneracy conditions.

Throughout, the vector-valued solutions u = (u1, u2, . . . , uL) of system (Global)
are to be understood in the classical sense, i.e., ui ∈ C2(Rn) for i = 1, 2, . . . , L.
Likewise, when considering its corresponding boundary value problem, −∆ui = fi(u1, u2, . . . , uL) in BR(0),

ui > 0 in BR(0),
ui = 0 on ∂BR(0), for i = 1, 2, . . . , L,

(Local)

the solution components are understood to be of the class C2(BR(0))∩C1(BR(0)).
There holds the following general existence result.

Theorem 3. System (Global) admits a radially symmetric solution provided that
the corresponding boundary value problem (Local) admits no radially symmetric
solution for any R > 0.

Remark 4. In view of Theorem 3 and some known non-existence results for bound-
ary value problems corresponding to our motivating examples, we will establish the
existence results for the Schrödinger and Lane-Emden type systems.

3. Proof of Theorem 3

To establish our general result, we introduce several important ideas. The proof
relies on constructing a particular map closely related to the shooting method. We
begin here by defining this map. For any positive initial value α = (α1, α2, . . . , αL),
i.e., αi > 0 for each i = 1, 2, . . . , L, consider the initial value problem,

(3.1)

 −
(
u
′′

i (r) +
n− 1

r
u
′

i(r)

)
= fi(u(r))

u
′

i(0) = 0, ui(0) = αi for i = 1, 2, . . . , L.

Definition 1. Define the target map ψ : RL+ −→ ∂RL+ as follows. For α belonging

to int(RL+), we set

(i) ψ(α) := u(r0) where r0 is the smallest finite value of r for which ui0(r) = 0
for some 1 ≤ i0 ≤ L. We say that this is the case where the solution touches
the wall.

(ii) If no such finite r0 exists, then we take r0 =∞ and set ψ(α) := limr→r0 u(r).
We say that this is the case where the solution never touches the wall.
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Moreover, we define ψ ≡ Identity on the boundary ∂RL+.

Remark 5. Note that we are making use of the monotonicity property of positive
solutions in this definition. We should also point out why ψ maps RL+ to its bound-

ary. Indeed, this is obvious for case (i) of the definition and when α ∈ ∂RL+. To see
this for case (ii), observe that if we send r −→ ∞ in (3.1), basic ODE or elliptic
theory indicates that 0 = F (ψ(α)). From this, the non-degeneracy conditions imply
that ψ(α) ∈ ∂RL+.

Proof of Theorem 3. We divide the proof into three main steps. The first two
steps will show that ψ maps hyperplanes in the positive quadrant onto the wall
provided that ψ is continuous. Then, the existence of entire bound state solutions
will follow from this surjectivity property and the non-existence of solutions for
(Local). Finally, the continuity of the target map is then shown in the remaining
step.

Step 1: We claim that ψ : RL+ −→ ∂RL+ is continuous, but we postpone the proof
of this until Step 3 in order to better convey the ideas of our method. With this
continuity assumption, fix any a > 0 and set

Pa :=

{
α ∈ RL+

∣∣ L∑
i=1

αi = a

}
and Qa :=

{
α ∈ ∂RL+

∣∣ L∑
i=1

αi ≤ a

}
.

We show that ψ : Pa −→ Qa is an onto map. To see this, first observe that
ψ maps Pa into Qa by the non-increasing property of solutions. Now define the
homeomorphism ϕ : Qa −→ Pa where

ϕ(α) = α+
1

L

(
a−

L∑
i=1

αi

)
(1, 1, · · · , 1)

whose inverse is given by

ϕ−1(α) = α−
(

min
i=1,··· ,L

αi

)
(1, 1, · · · , 1).

Set G = ϕ ◦ ψ : Pa −→ Pa. Indeed, G is continuous on Pa and is equivalent to
the identity map on the boundary of Pa. Then from elementary degree theory (see
[23]), the index of the map satisfies degree(G,Pa, α) = degree(Identity, Pa, α) = 1
for each interior point α ∈ int(Pa). Hence, this ensures that G is onto and thus ψ
is onto.

Step 2: Now, the surjectivity of ψ : Pa −→ Qa from Step 1 implies that we can
find a positive element αa ∈ int(Pa) such that ψ(αa) = 0. If u(r, αa) denotes the
solution of (3.1) with the initial value αa, we claim that this solution never touches
the wall, i.e.,

(3.2) u(r, αa) > 0 for all r > 0.

On the contrary, if we assume there was such a smallest r0 such that ui0(r0, αa) = 0
for some i0 ∈ {1, 2, . . . , L}, then this would imply that u(r0, αa) = ψ(αa) = 0 and
u(x) = u(|x|, αa) would be a radially symmetric solution of (Local) with R = r0.
This is impossible and thus assertion (3.2) holds. In addition, notice that we have
that u(x) −→ ψ(αa) = 0 uniformly as |x| −→ ∞. Hence, u(x) = u(|x|, αa) is indeed
a solution of (Global).

Step 3: It only remains to show that ψ : RL+ −→ ∂RL+ is continuous.
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Fix an ε > 0 and choose any α ∈ RL+. To prove ψ is continuous at α, there are

three cases to consider: (a) when α ∈ ∂RL+; (b) when α ∈ int(RL+) and the solution

to (3.1) with initial value α touches the wall; and (c) when α ∈ int(RL+) and the
solution to (3.1) with initial value α never touches the wall.

Case (a): The continuity of ψ at α = 0 is trivial and follows directly from the
non-increasing property of solutions, since |ψ(α) − ψ(α)| = |ψ(α)| ≤ |α| −→ 0 as
α −→ α = 0. Therefore, we assume α is a non-zero boundary point. In fact, from
the non-degeneracy conditions, we can assume that α1 = α2 = · · · = αj = 0 and
αj+1, . . . , αL > 0 for some j 6= L.

The first j components of ψ are continuous at α since

|ψk(α)− ψk(α)| ≤ |αk| −→ 0 as |α− α| −→ 0 for k = 1, 2, . . . , j.

The continuity of the remaining components will follow from the non-degeneracy
conditions. Roughly speaking, the idea is to exploit (2.1) to control the larger
components with the smaller ones.

First, we observe that if we multiply the ODE in (3.1) by rn−1 then integrate,
we can see that the solution with initial value α ∈ int(RL+) obeys the representation

(3.3) αk − uk(r, α) =

∫ r

0

1

ξn−1

∫ ξ

0

ηn−1fk(u(η, α)) dη dξ =: Gk(r, α) for all k.

Now set 2m := minj+1≤k≤L αk, M := |α|, and choose a suitably small δ > 0
satisfying

(3.4) δ ≤ min {m/2, ε/2} · (1 + Cm,M )−1,

such that |α − α| < δ. We claim that for r in [0, r0] (or in [0,∞) if the solution
never touches the wall), there holds

(3.5)

{
uk(r, α) ≤ m for k = 1, . . . , j,
uk(r, α) > m for k = j + 1, . . . , L.

Once we verify this assertion, (2.1) with (3.3) would then imply that

|ψk(α)− ψk(α)| = |αk − ψk(α)| ≤ |αk − αk|+ |Gk(r0, α)|

< δ + Cm,M

{ 1

L

j∑
i=1

Gi(r0, α)
}
< (1 + Cm,M )δ < ε

for k = j + 1, . . . , L, and thus we arrive at the desired result. Hence, it remains
to verify that (3.5) holds. Indeed, for k = 1, 2, . . . , j, uk(r, α) ≤ m by the non-
increasing property of solutions. To show boundedness of uk from below by m for
k = j + 1, j + 2, . . . , L, we argue by contradiction. That is, if we assume that there
exist k0 ∈ {j + 1, . . . , L} with the shortest bounded interval [0, rα,k0) such that
uk0(r, α) > m for all r ∈ [0, rα,k0) and uk0(rα,k0 , α) = m, then (2.1), (3.3) and (3.4)
imply

uk0(r, α) = αk0 −Gk0(r, α) ≥ αk0 − δ − Cm,M
{ 1

L

j∑
i=1

Gi(r, α)
}
≥ αk0 − δ − Cm,Mδ

≥ 2m− δ(1 + Cm,M ) ≥ 2m−m/2 = (3/2)m for r ∈ [0, rα,k0).

But this is impossible, and we complete the proof for this case.
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Case (b): As described earlier, sending r −→ ∞ in (3.1) yields F (ψ(α)) = 0,
which further implies that ψ(α) ∈ ∂RL+. Without loss of generality, we can assume

ψ1(α) = ψ2(α) = · · · = ψj(α) = 0 and ψj+1(α), . . . , ψL(α) > 0 for some j 6= L,

since the case ψ(α) = 0 can be treated similarly but is much simpler (see [29]).
Choose a suitably small δ ∈ (0, ε/[6(1 + Cm,M )]) and a large R > 0 such that for
|α− α| < δ,

(3.6) |u(R,α)− ψ(α)| < ε/3,

(3.7) u(r, α) > 0 on [0, R] and |u(R,α)− u(R,α)| < ε/3.

Then for k = 1, 2, . . . , j, we have that

|ψk(α)− ψk(α)| = |ψk(α)| ≤ |uk(R,α)| ≤ |uk(R,α)− uk(R,α)|+ |uk(R,α)| < ε.

We now show the remaining larger components of ψ are continuous at α by adopting
ideas from Case (a). Actually, it is easy to see that it is enough to show that

|uk(r, α)− ψk(α)| < ε for all r ≥ R and k = j + 1, j + 2, . . . , L.

Indeed, if we set 2m := minj+1≤i≤L ui(R,α) and M = |α|, then we can still show
(3.5) holds but for r ≥ R. Then, (2.1) with (3.3) and (3.7) imply that

|uk(r, α)− uk(R,α)| ≤ |αk − αk|+ |Gk(r, α)−Gk(R,α)|
≤ δ + |Gk(R,α)−Gk(R,α)|+ |Gk(r, α)−Gk(R,α)|
≤ 2(1 + Cm,M )δ + ε/3 < (2/3)ε.

Hence, combining this with (3.6) yields

|uk(r, α)− ψk(α)| ≤ |uk(r, α)− uk(R,α)|+ |uk(R,α)− ψk(α)| < ε for r ≥ R.

Case (c): Since the source terms fi are non-negative, a direct calculation shows
that u′i0(r0, α) < 0. This transversality condition along with ODE stability imply
that for α sufficiently close to α, the solution to this perturbed initial value problem
must touch the wall and ψ(α) must be near ψ(α). This completes the proof of the
continuity of ψ at α. �

4. Non-existence results and the proofs of Theorems 1 and 2

Proposition 1. There hold the following.

(i) Let s, t, p, q > 1. The boundary value problem, −∆u = usvq, u > 0 in BR(0),
−∆v = vtup, v > 0 in BR(0),
u = v = 0 on ∂BR(0),

has no solution for any R > 0 if either

min{s+ q, t+ p} ≥ n+ 2

n− 2
,

or
1

1 + q
+

1

1 + p
≤ n− 2

n
.
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(ii) If min{s, t, p, q} ≥ n+2
n−2 , then the system −∆u = us + vq, u > 0 in BR(0),
−∆v = vt + up, v > 0 in BR(0),

u = v = 0 on ∂BR(0),

has no solution for any R > 0.

Part (i) can be found in [26] (see Theorem 4) and [22] (see Proposition 4.1) and
part (ii) can be found in [30] (see Theorem 5.6).

Proofs of Theorems 1 and 2. (a) It is clear that the existence results of Theorems
1 and 2 follow directly from Theorem 3 and Proposition 1.

(b) The result on the symmetry of components of Theorem 1 follows from simple
ODE arguments much like those found in Section 3 of [14], but we include the
proof for completeness. More precisely, if (u, v) is a radially symmetric solution of
(1.2), then it suffices to show that u(0) = v(0), since basic ODE uniqueness theory
implies u(r) = v(r) for all r ≥ 0. Assume otherwise. On one hand, if we assume
that u(0) > v(0), then there is a maximal interval [0, R0) for some R0 ∈ (0,∞] such
that u(r) > v(r) for r ∈ [0, R0). Thus, condition (1.8) yields up−s(r) > vq−t(r) in
[0, R0) and so

(4.1) vt(r)up(r) > us(r)vq(r) for r ∈ [0, R0).

As before, we calculate that for r ≥ 0,

u(r) = u(0)−
∫ r

0

1

ξn−1

∫ ξ

0

ηn−1us(η)vq(η) dη dξ =: u(0)−G1(r),

v(r) = v(0)−
∫ r

0

1

ξn−1

∫ ξ

0

ηn−1vt(η)up(η) dη dξ =: v(0)−G2(r),

and from (4.1) we get that G2(R0) ≥ G1(R0). In addition, u(R0) = v(R0) since
u, v −→ 0 as |x| −→ ∞. Thus

0 > v(0)− u(0) = v(R0)− u(R0) +G2(R0)−G1(R0) = G2(R0)−G1(R0) ≥ 0

and we deduce a contradiction. Likewise, if we assume u(0) < v(0), we can mimic
the same argument above to arrive at the desired contradiction. Hence, we conclude
that u(0) = v(0) and this completes the proof of the theorem. �
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